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Abstract As a typical machine-learning based
detection technique, deformable part models (DPM)
achieve great success in detecting complex object
categories. The heavy computational burden of DPM,
however, severely restricts their utilization in many real
world applications. In this work, we accelerate DPM
via parallelization and hypothesis pruning. Firstly,
we implement the original DPM approach on a GPU
platform and parallelize it, making it 136 times faster
than DPM release 5 without loss of detection accuracy.
Furthermore, we use a mixture root template as a pre-
filter for hypothesis pruning, and achieve more than
200 times speedup over DPM release 5, apparently the
fastest implementation of DPM yet. The performance
of our method has been validated on the Pascal VOC
2007 and INRIA pedestrian datasets, and compared to
other state-of-the-art techniques.

Keywords deformable part models (DPM); GPU;
parallel computing; hypothesis pruning;
visual detection

1 Introduction

Detecting objects in visual media is important for
many computer vision tasks. To understand an
image, object detection usually is the first step. It is
still a challenging problem because the appearance of
each object category varies greatly due to differences
in illumination and viewpoint, as well as intra-class
diversity of shape, colour, texture, and other visual
properties for object instances.

Many techniques have been created to attack
this fundamental challenge over past decades [1–4].
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Amongst them, machine-learning based approaches
have been very successful in capturing the invariance
of specific object categories from large amounts of
training data. In a machine learning framework,
object detection is reduced to a binary classification
problem, where a classifier is trained to determine
whether or not an input image patch is an instance
of a target category at the given image position and
scale. This strategy is commonly called “sliding
window” detection.

As a typical machine-learning based detection
technique, in recent years, deformable part models
(DPM) [4, 5] have achieved great success: they
are very effective in detecting complex deformable
objects. The method follows the general sliding
window pipeline, but involves a more discriminative
mechanism which models not only the global
appearance of the whole sliding window, but also
the appearance of local parts and their geometric
relationships within the window. Deformable
models can handle significant variability in object
appearance because the parts making up an object
have deformable configurations. This means that
diverse appearance changes can be described and
captured by the models. To further reinforce the
capability of DPM to represent complex appearance
variations, especially caused by the changes of
view angle and pose, DPM mixture models were
introduced in Ref. [4].

DPM is a widely applicable technique for
general object detection. Recent works have
extended DPM to more challenging tasks, such as
face detection [6], pedestrian detection [7], pose
estimation [8], and human motion recognition [9],
and in doing so have achieved leading performance.
DPM’s computational cost, however, is a significant
bottleneck, hindering its use in real world
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applications. For the Pascal VOC dataset, it
takes more than 10 s to process each image;
the time is mainly spent on feature computation
and convolutional score calculation. DPM uses
histogram of oriented gradient (HOG) features,
which are representative but time consuming to
calculate. Furthermore, after the templates (filters)
have been trained, at detection time, the original
DPM evaluates the appearance score densely at
every image position and scale by calculating the
correlation between filters and feature maps. These
two factors result in a heavy computational burden
for DPM, but potentially these can be largely
relieved. To speed up DPM and make it more
applicable to real world requirements, in this work,
we accelerate DPM via the following contributions.

Parallelization. There are already several
accelerated versions of DPM; they will be reviewed in
detail in the next section. Most focus on algorithm
redesign from a theoretical or technical viewpoint.
Parallelization of DPM on GPUs, however, has
not yet attracted much attention from the research
community. Few publicly accessible works on GPU
implementation of DPM can be found except for
Ref. [10], which we will consider later. In fact,
the DPM framework is very suitable for parallel
GPU implementation. We have done this. We have
conducted a comprehensive experimental evaluation
on the Pascal VOC 2007 and INRIA pedestrian
datasets. The performance of our GPU version
of DPM, which we call DPM-GPU, significantly
outperforms other accelerated DPM approaches,
achieving over 136 times speedup compared to the
original DPM release 5, without accuracy loss.
This is apparently the most complete attempt to
parallelize DPM release 5 on the GPU and evaluate
it on challenging public datasets.

Hypothesis pruning. As DPM uses a standard
sliding window procedure, every image position at
every image pyramid level needs to be evaluated
to determine whether or not an object instance is
present. However, only a very sparse set contains
true positives. Hypothesis pruning can therefore be
used to largely reduce the unnecessary computing
cost. In this work, we introduce a initial filter to
prune object hypotheses. We apply a mixture root
filter as a pre-filter for DPM. The motivations are
twofold. First, a mixture root filter is capable of

removing most of the negative hypotheses without
lowering the average precision. We conduct a grid
search to find the optimal threshold for mixture root
filters, which is used to determine whether to keep
a hypothesis or not. Secondly, we can repeatedly
utilise the computed feature map and the mixture
root filters obtained in the training stage but without
extra training expense. The effectiveness of our
strategy is validated on both benchmark datasets.
It is over 200 times faster than DPM release 5 [4],
averaged over all 20 categories of the Pascal VOC
2007 dataset, and without accuracy loss. As far as
we know, this is the fastest implementation of DPM
yet.

2 Related work

DPM [4] is based on pictorial structure [11, 12],
extending it to a discriminative framework by
introducing latent support vector machine (LSVM)
to capture deformable part configurations, and
mixture models to deal with more complex intra-
class appearance variations. Although its detection
performance is good, DPM is too slow for many real
world applications.

To speed up DPM, several accelerated versions
have been proposed. In terms of strategy, our
work is most closely related to the cascade
DPM [13], inspired by Ref. [14], which prunes
partial hypotheses with a sequence of thresholds.
The original DPM [4, 15] considers all possible
locations in a given image when evaluating the
score of a “root” part along with other constituent
parts. Cascade DPM instead prunes sequentially
hypotheses whose scores are below a series of
thresholds. A part hierarchy is defined to determine
the order of pruning. Cascade DPM is a serially
executed algorithm, in which the hypotheses
surviving after pruning step i are presented as
candidates to pruning step i + 1. For this reason,
cascade DPM is unsuited to GPU parallelization.
In our work, all filters are computed in parallel
independently, allowing full utilisation of GPU
resources. Our experimental results reveal that for
most object categories, a mixture of root filters
is capable of pruning most false alarms without
lowering the average precision. Hence, we select it
but not the whole cascade DPM hierarchy as the
pre-filter for hypothesis pruning.
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In terms of GPU based parallelization of DPM,
our work is most similar to Ref. [10], which
parallelized DPM release 3. However, there are
several significant differences and improvements
in our work, comparing to Ref. [10], which are
summarized as follows.
1. We not only accelerate DPM using GPU

hardware, but also redesign the algorithm to
include the pruning strategy; it plays an
important role in the final speedup.

2. The mAP of 20 classes in the Pascal VOC 2007
dropped significantly in Ref. [10], while our work
makes a small improvement. We adopt many
measures to guarantee the detection performance
of our parallelized DPM.

3. We have implemented most parts of DPM on the
GPU, including the procedure for merging root
filter scores and part filter scores, and finding
candidate windows whose scores are bigger than
a threshold. These steps are not considered in
Ref. [10].

4. When computing convolutions between features
and filters, the filters are put in constant memory
to reduce global memory accesses in Ref. [10].
This limits the model size to be smaller than the
constant memory size, which is restrictive. In our
implementation, shared memory is used to store
filters.
Further different acceleration strategies have been

used to speed up DPM, which emphasise different
aspects of detection costs using DPM. In Ref. [16],
a coarse-to-fine inference procedure is proposed to
minimize the cost of matching each part to the
image using a multiresolution hierarchical part-based
model. In Ref. [17], FFT is used to reduce the
computational cost of convolution and accelerate
it by one order of magnitude. To reduce the
search space, motivated by Ref. [18], a branch-and-
bound scheme [19] is introduced to compute bounds
that accommodate hypothesis. Recently, Ref. [20]
accelerated DPM by constraining 2D correlation
as a linear combination of 1D correlations, using
neighbourhood-aware cascades for part pruning, and
building look-up tables for HOG extraction. It is
claimed to be the fastest DPM implementation but
still spends nearly 300 ms per frame.

We compare all of the methods mentioned above
and ours, using benchmark datasets to evaluate what

constitutes the state-of-the-art in DPM acceleration.
The results demonstrate that our strategy achieves
the best performance.

3 Parallel DPM and hypothesis
pruning

3.1 DPM revisited

DPM uses a sliding window pipeline, in which a score
β · Φ(x) needs to be evaluated to classify an image
point x as an object or not, where β contains model
parameters and Φ(x) is a feature vector [5]. Taking
into account the choice of mixture components and
part deformation, the classifier computes the score
in the form:

fβ(x) = max
z

β · Φ(x, z) (1)

where z are latent values specifying a mixture
component choice and the part configurations
associated with that component [5]. Detection occurs
when the score is above a threshold, and the inferred
latent values z∗ = arg max

z
β · Φ(x, z) are returned.

The model parameters β are obtained by training an
LSVM using a coordinate descent algorithm.

An n-part model for an object category
is defined by a set of parameters β =
(F0, (F1, d1), · · · , (Fn, dn), b), where F0 is a root
filter, Fi is a part filter, di is a deformation vector,
and b is a scalar bias term. An object hypothesis at
z = (p0, · · · , pn), where pi = (xi, yi, si) specifies the
position and scale of the i-th filter, is given by

score(z) =
n∑
i=0

Fi ·φ(I, pi)−
n∑
i=1

di ·ψ(pi, p0) + b (2)

where ψ(pi, p0) = (dxi,dyi, dx2
i ,dy2

i ), with dxi =
xi − x0 and dyi = yi − y0 and I is the given image.

To detect objects using a mixture model,
the accumulated root scores must be computed
independently for each component, and the
component hypothesis with the highest score is
selected.

3.2 Mixture root filters guided hypothesis
pruning

What we call the mixture root filters here is the DPM
model with no parts. There are three methods to
determine a mixture model for hypothesis pruning.
1. The mixture root model is produced during

training of the final DPM model. This gives the
mixture root model directly without an extra
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model training process. This is an advantage of
our proposed hypothesis pruning method.

2. To get a better mixture root model to guide
hypothesis pruning, we can increase the iteration
time or enhance the termination conditions during
mixture root model training.

3. We can set the number of parts in the DPM model
to zero, so the final model after training is the
mixture root model.
Generally speaking, the first method is the most

convenient way to obtain mixture root filters, but
the other two methods perform better at guiding
hypothesis pruning. We have tried all three methods
to select the best mixture root model for hypothesis
pruning. The size of each root filter is the same
in the final model and in the mixture root model.
We emphasize that the root filters contained in the
mixture root model differ from those in the final
model. Root filters in the final model lose their
detection ability when trained in combination with
with part filters.

The exhaustive search over all image scales and
positions is the most time-consuming part of DPM.
So to speed it up, we wish to reduce the number of
ineffective hypotheses. To this end, we have designed
a two-stage detection pipeline. In the first stage, a
coarse but dense search is conducted over all image
points to filter out most futile hypotheses. We use
the mixture of root filters, the intermediate result in
DPM training, as the initial filter for coarse pruning.
Thus, for the c-th component of the mixture root
filters, the selected hypothesis set is
D(c)

h = {z|score(c)
r (z) = F

(c)
0 · φ(I, p0) > Tmix} (3)

where Tmix is a threshold, determined in the training
stage by grid search (see later). In the second stage,
we make a fine search over the selected hypotheses
using the final full model: the part deformations are
used to further refine the results of coarse search.

Using mixture root filters as a pre-filter can (i)
repeatedly utilize the computed feature map and
(ii) avoid training an extra filter. By using grid
search, we can find the optimal threshold for the
coarse search. This enables the computational cost
to be largely reduced while the average precision
is not lowered. The redesigned algorithm can be
implemented not only on the CPU but also on
the GPU. Furthermore, the pre-filtering step is also
suitable for parallel computing. The acceleration

scheme based on hypothesis pruning is described in
Algorithm 1.

Note that after obtaining the detection set D(c),
we select the highest scoring component hypothesis
among all the components in mixture models as the
final detected object.

We now briefly analyze the time complexity of
our hypothesis pruning algorithm. Suppose we
have a feature pyramid with L valid positions to
be evaluated and a DPM model containing M

components. Take one component as an example
(the whole model is the same), which contains one
root filter and N part filters. Then the original
algorithm needs

32L(HRWR +NHPWP) (4)
multiplications, where 32 is the dimensionality of
the DPM feature, HR, WR represent the height
and width of the root filter, and HP, WP represent
the height and width of the part filter, respectively.
Suppose a fraction η ∈ (0, 1) of hypotheses are
rejected by the mixture model. Then our proposed
method needs

32L [HRWR + (1− η)(HRWR +NHPWP)] (5)
multiplications. Thus, the rejection rate η is critical
to our proposed hypothesis pruning algorithm, which

Algorithm 1: Hypothesis-pruning-based acceleration
Input:�: Tmix: pre-filter threshold, Tf: final threshold, I:

input image, M
(c)
m : c-th component of the mixture root

model, M
(c)
f : the c-th component of the final model.

Output:�: Detection set D(c) from the c-th component.
1: Calculate feature pyramid Fpyra with levels 0 to l

2: for i = 0 to l do
3: for all (x, y) in feature plane F i

pyra do
4: scoreil

mc
(x, y) = convolve(M (c)

m (x, y), F i
pyra(x, y))

5: end for
6: end for
7: for i = 0 to l do
8: for all (x, y) in feature plane F i

pyra do
9: if scorei

mc
(x, y) < Tmix then

10: break
11: else
12: scorei

f(x, y) = con(M (c)
f (x, y), F i

pyra(x, y))
13: if scorei

f(x, y) >= Tf then
14: D = D ∪ (i, x, y)
15: end if
16: end if
17: end for
18: end for
19: D(c) = non-maximum-suppression(D)
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will be considered in Section 4. If η is big enough,
then the speedup factor is

HRWR +NHPWP

HRWR
= 1 + NHPWP

HRWR
(6)

3.3 GPU implementation

We parallelize the proposed DPM acceleration
scheme on CUDA platform [21]. The complete
procedure is shown in Fig. 1. The platform comprises
a CPU host and GPU device. Most of the time
consuming modules, such as feature extraction and
convolution, are implemented on the GPU. The
CPU hosts the computing flow and mainly performs
initialisation and post-processing. The acceleration
process involves the following steps.

Host initialization. In this step, image, model
parameters, and the related thresholds are loaded.
The CPU prepares data for the GPU. These data
include filters, filter size, image pyramid size, feature
pyramid size, etc.

GPU computing. Based on the input image,
the image pyramid is first created. Next, starting
from the top level of the pyramid, the feature map
is computed. By convolving the feature map with
the mixture root model, we get proposals according
to the threshold set by grid search. Then the
final model is applied to evaluate these proposals.
When the current pyramid level is below the top
10 levels, the part filters’ responses need to be
computed, considering their deformation cost. The
summation of the root and part responses forms
the final response at this level. Once the response

pyramids of every component have been formed, the
GPU searches in parallel for points scoring above
the final threshold, and computes their bounding
boxes according to the size of the component and the
corresponding pyramid level. The results are then
transferred back to CPU.

Post-processing. In a given image, just a
few object instances are typically detected. Post-
processing of these detection results, including
bounding box clipping and non-maximum
suppression, is done on the CPU.

3.4 GPU optimization

Our optimization of the GPU implementation
considers memory management and involves
algorithm redesign. GPU optimization plays an
important role in GPU parallelization, and can
double the detection speed.

Memory management is critical to acceleration.
In GPU parallel computing, CGMA (compute to
global memory access) [22] is an important index
to evaluate GPU code. The memory bandwidth is
about 224 GB/s for the GTX970, but the theoretical
computing ability is up to 2440 GFLOPs, more
than 10 times the memory bandwidth. In order
to make full use of GPU computing ability, it is
critical to manage GPU memory. Different kinds
of GPU memory have different characteristics [23]:
a short summary is displayed in Table 1. In our
implementation, in a large number of tests, we find
that using following strategies for allocating GPU
memory resources results in the best performance.

Fig. 1 GPU implementation scheme.
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Table 1 Characteristics of different GPU memory

Memory Location Size Access Cache Speed Lifetime

Global memory Onboard 1–8 GB Device R/W; host R/W Non Slow Program
Constant memory Onboard 32/64 KB Device R/W; host R/W Yes Quick Program
Texture memory Onboard No more than global memory Device R/W; host R/W Yes Quick Program
Shared memory Onchip 32–96 KB Device R/W N/A Fast Block
Register memory Onchip 64 KB Device R/W N/A Fastest Thread

• Constant memory is used to store the pyramid
size, filter size, and so on, as they are used
repeatedly. Many threads access the same address
in constant memory; constant memory broadcasts
it instead of communicating with each thread in
turn.
• Texture memory is used to band each level of

the feature pyramid, as the data is relatively big
and is frequently visited. Generally one level of
the feature pyramid is beyond the size of shared
memory, although shared memory is the best
choice.
• Shared memory is used to save filter data. Each

filter is convolved with each position in the feature
pyramid. As the feature pyramid is banded with
the texture memory, each thread in a CUDA block
can load filters in shared memory together, which
is much faster than each thread loading filters on
its own.
• Global memory is used to save the results which

will be used later or transferred back to the CPU.
As constant memory and texture memory cannot
be written at running time, shared memory is
cleared after each GPU launch, and all computing
results need to be written to global memory.
After GPU memory optimization, the speedup for

the Pascal VOC 2007 dataset was increased from 80
to 160.

Algorithm optimization is another important part
of GPU acceleration. During GPU implementation
of the DPM algorithm, we found some redundant
parts could be omitted, as follows:
• The top interval which is set to be 10 levels of

the feature pyramid does not need to be convolved
with part filters. Also, convolution of the bottom
interval levels of the feature pyramid with root
filters can be omitted, because part filters need
to be placed at twice the spatial resolution of the
placement of the root in the DPM algorithm.
• In order to deal with image border conservatively

in the original DPM algorithm, each level in

the feature pyramid is padded with a certain
size feature, which is set according to the filter’s
size in the model. The artificially added feature
is 32D data represented by Fpad; its first 31D
are 0 and the last dimension is 1. In our GPU
implementation we do not pad the border feature,
but use B to represent the padded border area: if
a position P (x, y) ⊆ B then the dot product is

FM(f1, · · · , f32) · Fpad = f32 (7)
where FM is a point in the model. There is no need
to correlate a padded feature with filters, we can
simply decide whether a point is in the padded
border or not. This not only makes the feature
pyramid smaller, but also cuts down the amount of
calculation and especially the number of memory
accesses.
• Bounding box prediction is dropped in our

method, because it is not a fundamental part of
the original DPM algorithm.
Optimizing the original algorithm achieves a 200-

time speedup in our GPU implementation. We have
profiled our final GPU implementation, as shown
in Fig. 2. The model used had typical settings as
in Ref. [24]. The size of the image analyzed was
640 × 425, as used in Ref. [4]. The penultimate
row in Fig. 2 shows the GPU resource usage. At
first we compute the image pyramid, corresponding
to resizeXKernel and resizeYKernel in Fig. 2. As
can be seen, the GPU resources are nearly fully used
in this stage (the left red rectangle enclosed part).
Since we extract features and compute correlations
from top to bottom in the image pyramid, the
GPU usage is low at first and gradually becomes
higher with the increase in image size (the right red
rectangle enclosed part represents the GPU usage of
the computing process for the biggest image in the
pyramid).

4 Empirical results

The proposed method has been evaluated on the
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Fig. 2 CUDA Nsight profile of our GPU implementation.

Pascal VOC [25], INRIA pedestrian [3], and
SJTUVehicle datasets. Each dataset contains
thousands of real world images with bounding
boxes marking ground-truth object instances. If
a predicted bounding box overlaps more than 50%
with a ground-truth bounding box, it is considered
correct. Only one detection is considered correct
when a system detects several bounding boxes which
overlap a single ground-truth bounding box.
4.1 Experimental setting

In this work, all evaluated methods were built
based on DPM release 5 [24], using 10 levels in an
octave, an HOG bin size of 8, 6 components for
each category (or 2 for the INRIA dataset), and 8
parts for each component. We implemented a C++
version of DPM release 5 along with its multicore
version, a C++ GPU version, and a C++ GPU with
hypothesis pruning version.

For fair evaluation, all programs were run on the
same computer with an Intel i5 750 2.67 GHz CPU
(with 4 cores) and an nVidia GTX-970 GPU.
4.2 Grid search for the optimal threshold

In our DPM acceleration scheme, to prune the
hypotheses, we first needed to set a threshold for
the pre-filter. The final model only evaluates the
points whose score is over that threshold. To do
so, we conducted grid search on training data to
find the optimal threshold. For the mixture root
filter, we sought an optimal recall rate threshold in
the interval [−0.15, 0.15] centred on 0.95 with step
length 0.01. We thus needed to test over the entire

dataset 31 times for each mixture root model. It
was a time consuming procedure, for Pascal VOC
2007 taking 18 hours to test one threshold; it just
cost 5 minutes using our method. The aim is to find
a threshold giving a good balance between average
precision (AP) and time cost.

Figure 3 shows the grid search results for 8
example Pascal VOC object categories. By observing
the AP–time curves shown in the figures, we can
find that when the threshold is relatively low, almost
all the points can pass the filtering and the time
cost is slightly higher than a pure GPU version but
AP remains the same. With an increased threshold,
some points are rejected by the pre-filter so that the
computational burden is alleviated and the detection
time falls. The AP increases a little at first as some
false positives are filtered out. As the threshold
is further increased, more and more hypotheses are
rejected and therefore the detection time gradually
levels out. At the same time, both recall and AP
approach 0.

We expected that when the AP curve reached its
highest peak, the detection time would be close to
its lowest bound. For the Pascal VOC dataset, 15
out of 20 object categories were in line with our
expectation, but the other 5 object categories did
not agree with this rule. This is because for these
categories, the discriminative power of the mixture
root filter is not strong enough to clearly differentiate
false-positives and true-positives. Recall would be
lowered if the true-positives were also be filtered out,
so that AP will reduce if the increase in precision
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Fig. 3 Grid search for the optimal threshold for the pre-filter.

cannot make up for the loss in recall. Fortunately,
even for the hard categories, we can still find a
suitable threshold to strike a balance between time
cost and AP.
4.3 Evaluation on Pascal VOC 2007

We evaluated a range of DPM acceleration methods
on the Pascal VOC 2007 dataset: (1) DPM release
5 [24], (2) cascade DPM [13], (3) branch-bound
DPM [19], (4) FFT DPM [17], (5) coarse-to-fine
DPM [16], (6) fastest DPM [20], and our approach.

Firstly, we report the APs of all 20 object
categories in Table 2, where DPM-GPU-P is the
proposed method in this work and DPM-C++-omp
is the multicore C++ version of DPM release 5.
All methods achieve similar APs; nevertheless, our
proposed method gets the highest AP in 13 object
categories.

The critical performance indicator, time cost, of
each compared method, is reported in Table 3. The
speedup factors for different accelerated versions
of DPM algorithm are presented in Table 4. In
order to make a comparison with related work,
we have included another 5 methods in this table:
as the source code of those 5 methods has not
been published, the speedup factors are computed
based on the results in their papers. The C++
version of DPM release 5 is faster than the original
DPM release 5, but has an acceleration factor of
just 1.45 (see Table 4), and the speedup is not
significant. This is because in DPM release 5,
feature extraction and convolution operations, the
most time-consuming parts, are also programmed in

C. The multicore C++ version does not even reach
4 times faster than the C++ version, because only
convolution operations are processed in parallel by
multiple cores. Cascade-DPM, along with branch-
bound-DPM, FFT-DPM, and coarse-to-fine-DPM
attain one order of magnitude of acceleration over
the baseline DPM release 5. The recently proposed
fastest DPM [20] just runs over 40 times faster
than the baseline. For the Pascal VOC 2007,
the average detection time of another DPM GPU
implementation [10] is 154 ms according to the
author, giving a speedup factor of 88.5 over the
baseline release 5. Our implementation of GPU
parallelization achieves two orders of magnitude
acceleration and can run up to 136 times faster
than the baseline. By adding hypothesis pruning,
our proposed acceleration scheme achieves 200-time
speedup. It takes about 5–6 minutes to process the
entire Pascal VOC test set once using our method,
compared to 18 hours using release 5 DPM. This
makes it possible to search for the optimal threshold
over the entire training dataset, not just over an
interval centered on 0.95 recall.

Note that for a fair comparison, the time spent
on reading images is included in the detection time
in our tests for all the compared methods. As the
detection time of our method is just nearly 65 ms
per frame, the performance gains would be more
significant if image reading time costs were ignored.

To validate the effectiveness of our proposed pre-
filter for hypothesis pruning, we tested how many
hypotheses can be filtered out in the training data,
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Table 2 Average precision (AP) of different methods on 20 categories of Pascal VOC 2007 test dataset

Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV Avg.
DPM-v5 [24] 32.2 59.3 10.2 15.2 26.1 50.9 53.7 20.5 20.2 22.9 23.1 11.3 56.5 48.3 43.3 13.3 20.2 30.4 45.0 40.3 32.1

DPM-cascade [13] 32.1 59.4 10.2 14.8 26.1 47.1 53.8 20.6 20.1 23.4 19.6 11.4 56.5 48.4 43.2 13.4 20.2 30.3 45.0 40.1 31.8
DPM-C++ 31.6 59.5 9.8 15.1 26.2 50.6 53.0 15.5 20.6 22.1 20.6 10.4 56.4 50.5 40.2 12.6 20.6 30.5 45.8 41.5 31.7

DPM-C++-omp 31.5 59.5 9.8 15.1 26.2 50.6 53.0 15.5 20.6 22.1 20.5 10.3 56.4 50.5 40.2 12.6 20.6 30.5 45.8 41.5 31.6
DPM-GPU 32.3 59.9 10.2 15.1 26.2 51.2 54.2 21.0 20.2 23.0 22.7 11.3 57.3 48.7 42.8 13.2 20.2 30.4 45.4 41.0 32.3

DPM-GPU-P 33.2 60.2 9.7 15.8 26.3 49.7 56.1 19.7 21.1 22.6 23.5 10.9 58.0 48.8 43.2 13.7 20.9 30.9 45.5 41.7 32.6

Table 3 Average time of different methods on 20 categories of Pascal VOC 2007 test dataset (Unit: ms/frame)

Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV Avg.
DPM-v5 [24] 13648 14622 13496 14204 12995 14115 12745 15082 14612 14941 15623 14076 14030 13629 11971 11484 11189 13245 14369 12565 13632

DPM-cascade [13] 1287 920 1658 1454 1738 1015 1740 1269 2085 974 854 1281 981 1037 2268 1954 1169 974 914 1368 1347
DPM-C++ 8533 9068 8436 9796 9099 10261 8615 10016 9746 10016 10608 10407 9409 9102 8325 8414 8232 9572 10618 9187 9373

DPM-C++-omp 3482 3557 3327 3465 3149 3281 2818 3225 3227 3217 3343 3311 3387 3222 2969 2864 2784 3274 3424 3048 3219
DPM-GPU 102.4 98.7 97.7 101.3 97.2 101.0 98.4 100.5 98.3 99.7 103.7 100.2 99.7 102.8 97.7 97.5 97.0 102.8 102.1 101.4 100.0

DPM-GPU-P 63.5 68.8 59.5 61.4 68.1 75.7 62.1 80.5 59.1 58.7 67.1 67.1 63.1 70.6 62.5 56.8 60.5 66.4 63.2 58.7 64.9

Table 4 Speedup factor of the compared methods on Pascal VOC 2007

DPM-
v5 [24]

Cascade [13] C++ C++-
omp

DPM-
GPU

DPM-
GPU-P

DPM-
BB [19]

DPM-
FFT [17]

DPM-
CF [16]

Fastest-
DPM [20]

DPM-
gpu [10]

Speedup (×) 1.00 10.12 1.45 4.34 136.31 203.21 3.81 8.51 7.37 42.17 88.5

while at the same time, AP remains similar to
its baseline value. The results can be found in
Fig. 4. Our hypothesis pruning scheme removes
over 98% of ineffective hypotheses in many classes
of the Pascal VOC and only three classes (bottle,
bus, and motorbike) lie below the average filtering
rate which is up to 95% without effecting detection
performance. This shows that mixture root model
based pre-filtering works effectively in hypothesis
pruning.

4.4 Evaluation on INRIA pedestrian dataset

We also evaluated the methods on the INRIA
pedestrian dataset [3]. Detection performance is

given in Fig. 5. Obviously, the GPU version and
GPU-filter (the proposed pre-filter based) version
have similar performance, which are much better
than the baseline and cascade-DPM. The time costs
of the compared methods are given in Table 5.
Although there is just one component in the INRIA

Table 5 Average time of different methods on INRIA pedestrian
dataset

DPM-
v5 [24]

Cascade [13] DPM-
GPU

DPM-
GPU-P

Average time
(ms/frame)

21500 1770 90.1 71.2

Fig. 4 Proportion of hypotheses pruned, along with the AP of the baseline and the proposed method.
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Fig. 5 Precision–recall curve comparison between different methods.

model, the speed is not as fast as expected. The
main reason is that the average image size and filter
size are much bigger than for the Pascal VOC as
this dataset focuses on a standing person, which
has a much bigger height to width aspect ratio.
This directly increases the computational time of
the convolution operation. Another reason is that
a single component cannot fully utilize the GPU’s
parallelization capability. Even so, our method still
achieves 300-time acceleration over the baseline.

4.5 Evaluation on plate localization dataset

We have also evaluated our parallelized DPM on the
SJTUVehicle dataset, collected by SJTU visionlab.
The SJTUVehicle dataset contains 270,000 vehicle
images from highway monitoring. About 5500
frames were selected and labeled. As the dataset is
not published at present, we chose 4 image sizes for
evaluation. Our plate license DPM model contains
12 components, each of which consists of 1 root filter
and 7 part filters. The part filter’s aspect ratio is 6:3
to match characters in real Chinese license plates.

The DPM algorithm gets excellent detection
performance on the SJTUVehicle dataset: both

recall and precision are above 95%, and our method
hardly loses any licence plates in the SJTUVehicle
dataset. Our parallelized implementation provides
an encouraging average detection speed of up to 10
FPS. The speedup increases sharply along as the
image size changes from 300×300 to 600×600, as can
be seen in Table 6. Small images cannot make full
use of GPU computing resources; nevertheless, our
method still achieves around 200-time acceleration.
As the image size becomes big enough, our method
runs nearly 300 times faster than the baseline.

5 Conclusions and discussion

In this paper, we have presented an effective DPM
parallelization method. Firstly, we implemented
the original DPM release 5 on a GPU platform
and achieved 136-time acceleration. Furthermore,
we introduced mixture root filters as a pre-filter
to prune ineffective hypotheses, and achieved more
than 200-time speedup over the baseline, without
accuracy loss. A comprehensive evaluation on the
Pascal VOC, INRIA pedestrian, and SJTUVehicle
datasets demonstrates that our method is the fastest
implementation of DPM amongst various compared
methods.

In our method, learning an optimal threshold for
the pre-filter is a big challenge. Our current grid
search strategy considers AP as the criterion to
measure detection performance. This gives precision
and recall equal importance, but actually recall
is more important than precision during training,
because a few more false-positives have little impact
on speed as long as true-positives are kept. Also, our
current pre-filter still needs to be used to consider
all points at every scale. Other simple cascade
pre-filters could be explored to further reduce the
computational cost of the current mixture root filter.
The above two concerns will determine the direction

Table 6 Average time and speedup of different methods on the SJTUVehicle dataset

Method
Four kinds of image size

1034×834 698×728 579×591 282×273
Time (s/frame) Speedup Time (s/frame) Speedup Time (s/frame) Speedup Time (s/frame) Speedup

DPM-v5 60.5458 1 38.8021 1 28.5938 1 9.1171 1
DPM-C++ 36.5954 1.65 23.3871 1.66 16.9455 1.69 4.8539 1.88
DPM-C++-omp 14.4747 4.18 9.1869 4.22 6.6382 4.31 1.9472 4.68
DPM-GPU 0.3701 163.6 0.2285 169.86 0.1706 167.6 0.06186 147.4
DPM-GPU-P 0.2052 295.1 0.1326 292.7 0.1052 271.8 0.05102 178.8
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of our next work on this topic.
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